
U4. Color Utility Commands
    ViewIt supports several commands to help programmers get and set colors, plus a single
command to switch the color palette associated with a program.    The need for help with
getting and setting colors stems from the fact that the color environments available on the
Mac range from B & W w/o Color QuickDraw to the latest version of 32-bit QuickDraw
running on 32-bit deep screens.    By using utility commands to get and set colors, drawing
can be done without needing to be aware of the current color environment.

Name    Number    Parameters & Variables used
GetFgC    178    a,b,c,d,uRGB,uResult,uMenuID,
                                uMenuItem,uI2
GetBkC    179    a,b,c,d,uRGB,uResult,uMenuID,
                                uMenuItem,uI2
    Returns the foreground, GetFgC, or background, GetBkC, color from the designated port or    Returns the foreground, GetFgC, or background, GetBkC, color from the designated port or
color table.    When getting a color in a color table, the only difference between GetFgC and color table.    When getting a color in a color table, the only difference between GetFgC and
GetBkC is that the former returns black and the latter white when a color cannot be found.    GetBkC is that the former returns black and the latter white when a color cannot be found.   
All forms of GetFgC and GetBkC work in all color & non-color environments.All forms of GetFgC and GetBkC work in all color & non-color environments.
• if b = 0 then...• if b = 0 then...
    a = source window or port    a = source window or port
      0 = front modal or active modeless window      0 = front modal or active modeless window
      1 = current port      1 = current port
      other = WindowPtr or GrafPtr      other = WindowPtr or GrafPtr
    c & d are not used (pass 0)    c & d are not used (pass 0)
• if b = -1 then...• if b = -1 then...
    c = clut ID or handle    c = clut ID or handle
    d = clut index (1-based)    d = clut index (1-based)
    a is not used (pass 0)    a is not used (pass 0)
• if b = -2 then...• if b = -2 then...
    c = clut ID or handle    c = clut ID or handle
    d = clut value (partID)    d = clut value (partID)
    a is not used (pass 0)    a is not used (pass 0)
where the unusual use of parameter b to determine the type of action follows that seen in where the unusual use of parameter b to determine the type of action follows that seen in
the SetFgC/BkC commands.the SetFgC/BkC commands.
    For both color and non-color ports, the color is returned in both uRGB and in the three 4-    For both color and non-color ports, the color is returned in both uRGB and in the three 4-
byte integer variables uResult, uMenuID, and uMenuItem, where the latter either contain an byte integer variables uResult, uMenuID, and uMenuItem, where the latter either contain an
old-style color constant in uResult and -1 in uMenuID and uMenuItem, or the three RGB colorold-style color constant in uResult and -1 in uMenuID and uMenuItem, or the three RGB color
components in the low word of each variable.components in the low word of each variable.
    When getting a color by index from a clut, uI2 returns the entry's partID.    When getting a     When getting a color by index from a clut, uI2 returns the entry's partID.    When getting a
color by partID, and the partID cannot be found in the clut, then ViewIt will get the color color by partID, and the partID cannot be found in the clut, then ViewIt will get the color
from clut 1211 which contains a copy of the standard control colors.from clut 1211 which contains a copy of the standard control colors.
    ViewIt includes clut 1210 which contains the 8 old-style colors as RGB colors with part IDs     ViewIt includes clut 1210 which contains the 8 old-style colors as RGB colors with part IDs
equal to the old-style color constants.    This facilitates finding the RGB equivalent of an old-equal to the old-style color constants.    This facilitates finding the RGB equivalent of an old-
style color by calling GetFgC with b = -2,    c = 1210, and d = old-style color constant (= the style color by calling GetFgC with b = -2,    c = 1210, and d = old-style color constant (= the
partID).partID).

SetFgC    180    a,b,c,d,uRGB,uResult
SetBkC    181    a,b,c,d,uRGB,uResult
    Resets the foreground, SetFgC, or background, SetBkC, color-related fields of the Resets the foreground, SetFgC, or background, SetBkC, color-related fields of the
designated port's (C)GrafPort record, where parameters b, c, and d specify the color.    All designated port's (C)GrafPort record, where parameters b, c, and d specify the color.    All
forms of SetFgC and SetBkC will work in all color and non-color environments.    Black forms of SetFgC and SetBkC will work in all color and non-color environments.    Black
(foreground) or white (background) is used as the default color if the specified color is not (foreground) or white (background) is used as the default color if the specified color is not
supported in the current environment.    If the port's color is changed, ViewIt returns uResult supported in the current environment.    If the port's color is changed, ViewIt returns uResult
≠ 0.≠ 0.
    a = target window or port    a = target window or port

      0 = front modal or active modeless window      0 = front modal or active modeless window
      1 = current port      1 = current port
      other = WindowPtr or GrafPtr      other = WindowPtr or GrafPtr
• if b = c = d = -1 then...• if b = c = d = -1 then...
    uRGB is used as source of color    uRGB is used as source of color
• if b = -1 then...• if b = -1 then...
    c = clut ID or handle    c = clut ID or handle
    d = clut index (1-based)    d = clut index (1-based)
• if b = -2 then...• if b = -2 then...
    c = clut ID or handle    c = clut ID or handle
    d = clut value (partID)    d = clut value (partID)
• if b > 0 and c = d = -1 then...• if b > 0 and c = d = -1 then...
    b = address of RBG color OR old-style color constant:    b = address of RBG color OR old-style color constant:
          33 = black, 30 = white, 205 = red, 341 = green,          33 = black, 30 = white, 205 = red, 341 = green,
          409 = blue, 273 = cyan, 137 = magenta, 69 = yellow          409 = blue, 273 = cyan, 137 = magenta, 69 = yellow
• if b ≥ 0, c ≥ 0, d ≥ 0 then...• if b ≥ 0, c ≥ 0, d ≥ 0 then...
    b = red component (in low word, 0 to 65535)    b = red component (in low word, 0 to 65535)
    c = green component (in low word, 0 to 65535)    c = green component (in low word, 0 to 65535)
    d = blue component (in low word, 0 to 65535)    d = blue component (in low word, 0 to 65535)
where the unusual use of parameter b arose from efforts to maintain backward compatibilitywhere the unusual use of parameter b arose from efforts to maintain backward compatibility
with older versions.with older versions.
    When searching for a "partID" (typically used by control drivers to set control part colors),     When searching for a "partID" (typically used by control drivers to set control part colors),
and the partID cannot be found in the designated clut, then ViewIt will try getting the color and the partID cannot be found in the designated clut, then ViewIt will try getting the color
from clut 1211 which contains a copy of the standard control colors.    This makes it easy for from clut 1211 which contains a copy of the standard control colors.    This makes it easy for
control drivers to set control part colors without having to worry about the color environmentcontrol drivers to set control part colors without having to worry about the color environment
in use.in use.
    To help understand the use of b, c, and d, consider the following examples which all     To help understand the use of b, c, and d, consider the following examples which all
specify the color white:specify the color white:
    b = c = d = -1, uRGB.red = green = blue = $FFFF    b = c = d = -1, uRGB.red = green = blue = $FFFF
    b = -1, c = 1211, d = 2    (the 2nd color in clut 1211)    b = -1, c = 1211, d = 2    (the 2nd color in clut 1211)
    b = 30, c = d = $FFFFFFFF = -1    b = 30, c = d = $FFFFFFFF = -1
    b = c = d = $0000FFFF = 65535    b = c = d = $0000FFFF = 65535
NOTE:    NOTE:    When creating complex pictures or pixmaps with thousands of different colors, it is When creating complex pictures or pixmaps with thousands of different colors, it is
usually not advisable to use SetFgC or SetBkC to set colors since they are more time-usually not advisable to use SetFgC or SetBkC to set colors since they are more time-
consuming than the corresponding toolbox calls.consuming than the corresponding toolbox calls.

SetPal 185    a,b,c,d,uResult
    Resets the current program-wide color palette or palette characteristics according to the Resets the current program-wide color palette or palette characteristics according to the
parameters a, b, c, and d.    SetPal is ignored if Color QuickDraw is not supported, and parameters a, b, c, and d.    SetPal is ignored if Color QuickDraw is not supported, and
uResult returns a negative value if an error occurs.uResult returns a negative value if an error occurs.
    a = scope of palette change, or source clut resource    a = scope of palette change, or source clut resource
      < -1 = - ID of clut resource or System color table      < -1 = - ID of clut resource or System color table
      -1 = apply to all palette entries      -1 = apply to all palette entries
      0 to 255 = palette entry number      0 to 255 = palette entry number
      > 255 = clut handle in memory      > 255 = clut handle in memory
    b = palette entry usage    b = palette entry usage
      0 = pmCourteous      0 = pmCourteous
      2 = pmTolerant      2 = pmTolerant
      4 = pmAnimated      4 = pmAnimated
      8 = pmExplicit      8 = pmExplicit
      10 = pmTolerant + pmExplicit (System ≥ 7 or 32-bit QD)      10 = pmTolerant + pmExplicit (System ≥ 7 or 32-bit QD)
      12 = pmAnimated + pmExplicit (System ≥ 7 or 32-bit QD)      12 = pmAnimated + pmExplicit (System ≥ 7 or 32-bit QD)
    c = palette entry tolerance    c = palette entry tolerance
    d = target palette    d = target palette
      0 = the program-wide palette      0 = the program-wide palette

      other = a palette handle      other = a palette handle
where a "clut" is a resource that contains a table of colors that can be created/edited with where a "clut" is a resource that contains a table of colors that can be created/edited with
ResEdit or other resource editor.ResEdit or other resource editor.
    If the scope of changes applies to the entire palette (a < 0 or a > 255), then all visible     If the scope of changes applies to the entire palette (a < 0 or a > 255), then all visible
windows in all screens are erased and invalidated.windows in all screens are erased and invalidated.         In cases where your program keeps In cases where your program keeps
control after calling SetPal, you may want to call DoUpdt to force all of the invalidated control after calling SetPal, you may want to call DoUpdt to force all of the invalidated
windows to be redrawn.windows to be redrawn.
    The most common use of SetPal is to use it to force screen pixel values to correspond to     The most common use of SetPal is to use it to force screen pixel values to correspond to
specific RGB colors so that pixels in pixmaps can be poked directly (a complete discussion ofspecific RGB colors so that pixels in pixmaps can be poked directly (a complete discussion of
this is presented in the GrafCt documentation).    If, for example, clut 1001 contained 256 this is presented in the GrafCt documentation).    If, for example, clut 1001 contained 256
grays, then the following call would force an 8-bit monitor to display the 256 grays with the grays, then the following call would force an 8-bit monitor to display the 256 grays with the
index value of each gray from the clut equal to the pixel value (0-255):index value of each gray from the clut equal to the pixel value (0-255):
 FaceIt(nil,SetPal,-1001,10,0,0); FaceIt(nil,SetPal,-1001,10,0,0);
where b = 10 ensures the correspondence between RGB color and pixel value.    To "undo" where b = 10 ensures the correspondence between RGB color and pixel value.    To "undo"
this palette change without quitting the program, simply reset the palette to the System this palette change without quitting the program, simply reset the palette to the System
color table corresponding to the current screen depth:color table corresponding to the current screen depth:
 FaceIt(nil,SetPal,-8,2,0,0); force color change FaceIt(nil,SetPal,-8,2,0,0); force color change
 FaceIt(nil,SetPal,-1,0,0,0); minimize redrawing FaceIt(nil,SetPal,-1,0,0,0); minimize redrawing
where "-8" refers to the 8-bit deep, 256-color System color table, and SetPal is called a where "-8" refers to the 8-bit deep, 256-color System color table, and SetPal is called a
second time to reset the usage of these new colors to "courteous" to minimize window second time to reset the usage of these new colors to "courteous" to minimize window
redrawing when switching between programs.redrawing when switching between programs.
    Several other points about SetPal and the program-wide color palette are worth noting:    Several other points about SetPal and the program-wide color palette are worth noting:
• If FaceIt is in use and SetPal is called while the program is in the background under • If FaceIt is in use and SetPal is called while the program is in the background under
MultiFinder or System 7, then ViewIt keeps control and delays executing SetPal until the MultiFinder or System 7, then ViewIt keeps control and delays executing SetPal until the
program is brought forward.program is brought forward.
• • If the screen depth supports fewer colors than are in the palette, then only the first colors
from the palette will be available.    The 16-color System palette (ID = 4), for example,
contains the colors white, black, light gray, dark gray, plus 12 other common colors (in that
order).    This produces reasonable colors at all screen depths:
    1 bit/pixel --> white & black displayed
    2 bits/pixel --> white, black, light gray, dark gray
    4 bits/pixel --> all 16 colors from clut 1000
 > 4 bits/pixel --> all 16 colors plus others
• Experienced programmers can obtain a handle to the current program-wide palette by
calling "GetPalette" with an argument of -1 (i.e., "GetPalette(WindowPtr(-1))").    This handle
can then be used with other Color QuickDraw calls to directly manipulate the contents of the
palette.
• Although each window in a program can have its own color palette, we recommend using
the single program-wide palette for the following reasons:    (1) it minimizes the amount of
window updating that occurs when different windows in the same program are brought to
the front, (2) it solves the problem of floating windows which would otherwise have to be
assigned the palette of the active window, and (3) it greatly simplifies the manipulation and
switching of color palettes (you only have one to deal with).

